Реклама

Разделы сайта

Реклама от Google AdSense

!!! Чтобы найти нужные вам саженцы, культуру, сорт и т.д., воспользуйтесь поиском, размещённым вверху каждой страницы. На сайте можно найти почти любой посадочный материал: семена, саженцы и прочее. Нужно самим поискать а не ждать "золотую рыбку" для услуг. По личным вопросам к авторам необходимо обращаться по указанным на страницах адресам, а не в комментариях. Личная переписка удаляется
Каталоги на посадочный материал постоянно обновляются. Советуем регулярно проверять изменения в соответствующих разделах, на персональных страницах садоводов и на других страницах сайта

При введении комментария просим указывать своё имя и регион и свой e-mail-адрес

Почва, как среда обитания корней микробов и животных

Почва, как среда обитания корней микробов и животных

Живая почва сада

Статья 6

Предыдущую статью я закончил фразой: Если спросить меня, назовите главный ресурс почвы, определяющий плодородие, я отвечу, что это не только содержание гумуса в почве и содержание доступных NPK в этом гумусе, главный ресурс моей почвы, определяющий урожай – это биоразнообразие живых существ населяющих почву.

Чем выше биоразнообразие почвенной биоты, тем лучше формируются микрогранулы почвы, строятся микро галереи, повышается её пористость, увеличивается в сотни раз площадь внутренней поверхности почвенных частиц и, естественно, площадь обитания микроорганизмов.

Всё это формирует разные экологические ниши для микробов. Как следствие контролирует болезни и вредителей.

Поговорим на эту тему подробней.

Почвы на наших грядках отличаются по составу (глина, песок), по размерам частиц, по степени выветривания, по слоям (профилю) – чем выше слой, тем больше органики и кислорода.

Это надо знать садоводу, чтобы понимать, как управлять процессами в почве.

Ведь структура почвы, размер частиц, степень разложения органики, определяет размер почвенных стабильных агрегатов, размер пор и как следствие площадь плёнок воды, где сосредоточена жизнь микробов и корней.

Надо помнить всегда и другое.

Чем больше корней культурных растение и дикоросов пронизывают почву, чем больше органики корневых выделение и отмерших корней поступает в почву, тем быстрей и в большем объёме нарастает почвенная биота.

Почва в процессе эксплуатации всегда меняется. Качество этих изменений зависит от садовода.

Остановимся чуть подробнее на этом.

Бактерии и грибы всегда прячутся от почвенных хищников в мелких порах и в глубине гранул. Как только мы лопатой нарушили их убежища, всё, что оказалось вне убежищ тут же съедается ползающими коллемболами, амёбами и др. хищниками.

Бактерии и грибы поэтому обычно живут осёдло, колониями. Прикрепляют себя к глинистым и перегнойным частицам жгутиками, полисахаридными смолами, грибницей.

Чем больше глинистых частиц, тем тоньше поры, куда нет хода хищникам. И наоборот, слишком плотная глина не проходима даже для мелких бактерий, поэтому органика в ней не разлагается годами и не доступна корням.

Но вот на грядки приходят черви, клещи, многоножки, нематоды, они прокладывают норки и норы, заглатывают органику вместе с глиной и песком, в их полостях работают более быстрые микроорганизмы, переваривая и разлагая с огромной скоростью почвенные частицы и попутно переваривая микроорганизмы, выделяя копролиты в почвенных ходах, куда устремляется воздух влага и корни.

Управлять этими процессами можно. Не надо переворачивать почву с ног на голову. А надо просто регулярно насыпать сверху органику с правильным соотношением азота к углероду и увлажнять почву.

Если садовод научен смотреть на органику как на питание (NPK) для корней, толку бывает мало.

Такой садовод свежий навоз закапывает в грядки, делает слой органики в «тёплых грядках» иногда метровой толщины, под растение насыпает толстый слой свежих сорняков, которые после дождя гниют.

Рано или поздно и эта органика принесёт пользу, но вначале она нарушит и структуру почвы и жизнь биоты, особенно быстро уничтожит почвенных хищников.

Поэтому важно знать, в какой органике, и в каких условиях быстрее всего заводятся почвенные мелкие животные, и вносить именно такую рыхлую органику, с соотношением азотистых и углеродистых отходов 1/30, с целью создания условий жизни мелким хищникам. А они обязательно и накормят и защитят ваши растения.

Крики соседей, что в рыхлой органике много всяких вредных жучков червячков и улиток, которые съедят корни и надо их всех убить и закопать – это вредный миф.

Главное – постоянство. Понемногу, в течение всего года, много лет подряд мульчируйте землю тем, что можно найти рядом или недорого привезти, при этом внимательно корригируя азот или углерод.

В любых постоянных условиях наладится свой биоценоз, лишь бы была энергия доступного углерода для бактерий и грибов.

Микробиота научится вырабатывать необходимые ферменты для разложения имеющихся энергетических продуктов, прежде всего целлюлозу, секретами привлечёт азотофиксаторов, которые добавят в пищевые цепочки почвы соли азота.

Чем лучше будет соотношение глины, песка и гумуса, чем меньше поры, тем больше почвенных бактерий спрячется от хищников, быстрей и лучше переработают вносимую органику, накормят растения.

А если вы мульчёй сохраните влагу и поры для воздуха – то и для корней и для биоты наступят райские условия жизни, сформируется особенная для ваших условий стабильная экосистема.

Попытаемся поразмышлять дальше, какие превращения происходят в почве, если сложилась стабильная почвенная экосистема.

Вспомним, что такое органическое вещество почвы.

Органическое вещество почвы состоит из углеродсодержащих соединений, образующихся в результате биологических процессов. Стоит помнить о двух главных процессах: разложение опада и разложение почвенных организмов, которые размножились на секретах корней и опаде корней.

Поэтому органика почвы - это всегда разная степень разложения клеточной структуры растений и животных. Медленней всего разлагается лигнин и хитин.

Но кроме мёртвой органики в почве всегда есть живые корни, живые микроорганизмы, и крупные почвенные животные. Чем их больше, тем почвы обычно плодородней и лучше противостоят стрессам.

Растения получают СО2, как принято говорить, углерод, только из атмосферы, эволюционно они не могут усваивать огромные запасы углерода в виде СО2 и глюкозы из почвы.

Спекуляции на этот счёт наукой не подтверждены. Опыты с СО2 и корнями в экспериментах, в реальной почве не играют никакой важной роли в жизни растений.

Есть много промышленных теплиц, где с поливной водой вносят в почву СО2 в огромной концентрации, корни его не всасывают, просто он медленно поднимается вверх и всасывается листьями через устьица, повышая фотосинтез и урожай. Урожай в теплицах при прочих равных условиях всегда зависит от содержания СО2 в воздухе, и не зависит от его содержания в почве.

В теплицах, где не вносят дополнительный СО2, в летний солнечный листья быстро его выедают, содержание падает ниже 0,01% и фотосинтез прекращается, а в почве днём концентрация СО2 очень высока из за разложения органики, но корни её почти не усваивают (не более 4%).

В растения углерод поступает всегда из воздуха, в листьях (и в корнях) синтезируются более сложные органические соединения. Эти соединения поступают в почву и разлагаются гетеротрофными микроорганизмами.

Получается, сколько органики растение синтезирует и отдаёт почве, столько и поступает энергии для жизни биоты. Это в полях.

Но садовод может внести в почву дополнительную органику, чем резко ускорить процессы почвообразования, или неразумно внести минералку и пестициды, чем замедлить эти процессы.

Правильней, именно фотосинтез, точнее производство растением органических веществ, рассматривать как основной процесс, а далее смотреть, что улучшает этот процесс. Например, продолжительность и интенсивность света, содержание СО2 в воздухе, точнее поднос ветерком к листьям СО2, его содержание в микрозонах устьиц.

Наличие и доступность питательных веществ в почве, а так же влаги и тепла.

Наличие симбионтной биоты в почве со своими нужными растениям гормонами и витаминами.

Приведу примеры, чтобы оттенить важную мысль.

Внесите в виде мульчи на одну грядку траву люцерны или льна, на другую траву лебеды. Стебель люцерны очень прочный. Он состоит из сложных прочных молекул лигнина, при этом вместе с целлюлозой этот лигнин включён в прочнейшие стенки клеток растения. Разорвать эти связи способны ферменты редких грибов.

Поэтому гумус из этого лигнина сохраняется в почве сотни лет и определяет её пористость.

Лебеда состоит из простых белков, сахаров и немного целлюлозы. Разлагается очень быстро, почти не оставляя гумуса, сразу включаясь в пищевые цепочки микроорганизмов, поставляет растениям много азота.

Микроорганизмы так же быстро или умирают или поедаются хищниками и кормят азотом растения, а вот гумуса после себя почти не оставляют, потому что они не содержат структурно сложных молекул, таких как лигнин и целлюлоза.

На первой грядке растения вырастут слабее, а гумуса станет больше, на второй растения будут жировать, а содержание гумуса падать.

Лигнин появился в растениях в процессе эволюции не сразу, а только тогда, когда в них появились сосуды.

В отличие от целлюлозы, которая состоит из линейных цепочек сахаров, лигнин состоит из молекул с трёхмерной закольцованной структурой.

Грибы (бактерии) своими ферментами легко разрушает целлюлозу и черпают из неё энергию, для разрушения же лигнина ферментов и энергии надо затратить больше, а так как в лигнине практически нет азота и других дефицитных элементов, то ради одной энергии углерода биота с ним не связывается. Это и для растений балласт. Древние растения его просто выбрасывали (как какашки).

Сосудистые растения приспособились утилизировать лигнин, с помощью лигнина укреплять стенку проводящих сосудов. Как только в природе появился опад сосудистых растений, то есть появилось много лигнина, появились и грибы базидиомицеты, которые его переводят в гумус.

В почве гумус включился в дальнейшие цепочки почвообразования и сыграл ведущую роль для «строительства домов и городов» для почвенной биоты, определяя структуру почвы и её способность делать доступными для корней дефицитные минералы почвы.

Почитаем, что пишут учёные, как образовался гумус чернозёмных степей:

«… Максимальное накопление гумуса в мощных тучных черноземах связано с разложением большого количества корневых остатков в условиях весеннего максимума влаги при ограниченном сквозном промачивании гумусового горизонта.

Сухой летний период играет важную роль в образовании и накоплении гумуса черноземов по следующей причине: недостаток влаги в почве к концу лета подавляет жизнедеятельность микроорганизмов, разлагающих и минерализующих растительные остатки, но в это время продолжают интенсивно работать ферменты, играющие существенную роль в процессах собственно гумификации.

В течение вегетационного периода содержание гумуса в типичном чернозёме под целинной степью закономерно изменяется, уменьшаясь приблизительно к концу июня и снова повышаясь в сентябре. Гумус обильно снабжает элементами минерального питания интенсивно вегетирующую в это время растительность.

В конце же лета, она как бы «отдаёт» почве новое синтезированное органическое вещество взамен старого, израсходованного почвой на минерализацию в период бурного роста вегетативной массы.

В самом верхнем наиболее корнеобитаемом слое чернозема 0-5 см сезонные изменения содержания гумуса достигают, 2%: содержание гумуса сначала уменьшается с 10-11 до 8-9%, а к осени более или менее восстанавливается до первоначального уровня. Потеря 1-2% гумуса - это 25-30 т/га.

Невозможно предположить, что такое количество гумуса за 2-3 мес. может восстановить опад корней.

Самих корней в верхнем 20-сантиметровом слое чернозёма содержится 18 т/га.

Откуда же берётся органический материал – источник пополнения гумуса в чернозёме к концу вегетационного периода?

Этим источником являются не только опад корней и не только надземная масса степных трав после её отмирания, но и прижизненные корневые выделения, которые, тоже подчинены сезонной ритмике и достаточно обильны в целинно-степных чернозёмах …»

Я этими цитатами хочу показать, что даже в степях, в дикой природе гумус прирастает очень медленно, тысячи лет. А вот падает в периоде вегетации растений летом на 2%.

Посадка сидератов не меняет скорости накопления гумуса.

Да, сидераты осенью дадут прибавку 1-2% гумуса, но ведь за лето они и съедят эти 1-2%. Без внесения щепы из сладких веточек или другой дополнительной органики нам не обойтись.

Теперь вам стала понятна роль гумуса в эволюции растений? Нет? Поговорим ещё.

Оксфордский словарь английского языка гласит, что гумус – «органический компонент почвы, формируется в результате разложения листьев и других растительных материалов» и что происходит от латинского, (лат. humus ) означает «почва».

Это простое определение, и оно не уточняет, что гуминовые вещества являются одними из самых сложных молекул и они чрезвычайно разнообразны.

«… В почвоведении, гумус относится к любому органическому веществу, которое достигло точки стабильности, когда оно не будет изменяться далее, и может, если условия не меняются, оставаться стабильным на протяжении веков, если не тысячелетий …». так написано в Википедии.

Гуминовые вещества образуются в результате распада органических веществ в почве, почти всегда перерабатываются ферментами живой биоты, поэтому они химически связаны с молекулами микробного и животного происхождения. Получить их в пробирке не удаётся. Только при разрушении энзимами грибов, и в дальнейшем в полости червей образуется гумус.

В конечном итоге любая органика, пройдя все пищевые цепочки почвенной биоты, оставляет в почве гумус. Гумус соединится с минералами почвы (как пример, в карбонатных почвах с кальцием, в глинистых – с солями алюминия и железа) и сформирует десяток видов и сотню подвидов почв, пригодных для жизни тех или иных растений.

Получается, что слово гумус учёными трактуется в узком и широком смысле.

Гумус – как точка стабильности разложения органики, когда не содержит азота и не будет изменяться далее.

И гумус как «чёрное вещество чернозёма», как humus «почва», 12% чернозёма, по сути, перегной, содержащий доступные NPK.

Простому садоводу надо знать главное, что чем больше гумуса в почве, тем лучше плодородие почвы и выше урожай. Неправильная агротехника приводит к тому, что на грядках садовода гумус быстро теряется. И наоборот. В силах опытного садовода повысить содержание гумуса почвы.

Поговорим об условиях разложения органики.

В свежем опаде находится много разных органических молекул, некоторые из них быстрее перерабатываются почвенными организмами, чем лигнин или целлюлоза.

Например, крахмал и аминокислоты – это простые органические молекулы, первыми вступают в процесс разложения. Очень много почвенных бактерий и грибов имеют ферменты, необходимые для этого процесса. Все видели, как быстро скисает мясной бульон или ягодный сок.

Разложение крахмала и аминокислот обеспечивает большую часть энергетических потребностей микроорганизмов почвы. Поэтому так эффективны подкормки растений настоями, например крапивы или окопника, где много сахаров и белка.

В противоположность этому, фенольные соединения, воски и лигнин состоят из более сложных органических молекул, в почве не деградирует в течение очень длительного периода времени.

Но бактерии, грибы, черви с клещами перерабатывают органику, если есть влага, воздух, нужное pH и температура. Об этом часто забывают начинающие.

Органика тонким слоем, положенная на песок – высохнет, закопанная глубоко – заплесневеет, сгниёт. Опилки без азота – закислят почву, пищевые отходы и зелёные листья из-за избытка азота загниют.

Процесс разложения органических веществ называется минерализацией. Во время минерализации, элементы, которые были частью структуры органических молекул, пройдя серию пищевых цепочек, постепенно окисляются до менее сложных форм, в конечном счёте, превращается в неорганические молекул, которые и усваиваются корнями.

Цель у микробов чисто утилитарная, забрать из органики энергию углерода, забрать из органики и из почвенного комплекса углерод, NPK и микроэлементы и построить свои тела, прежде всего нуклеиновые кислоты, белки и клеточные стенки.

Главный дефицит для них – это углерод с его энергией, второй лимитирующий фактор - это азот, хотя в почве богатой биотой при достатке энергии сахаров – дефицита азота нет, аммоний синтезируется из воздуха.

Таким образом, при разложении органики, в которой обычно много азота и фосфора, в богатой гумусом почве быстро создаётся избыток этих главных элементов, чем требуется для дальнейшего роста микроорганизма, этот избыток связывается минералами почвы или накапливаются в клетках микроорганизмов.

На почвах бедных глиной и биотой всё это уходит в реки.

Если в органике достаточно лигнина, то образующийся гумус иммобилизует избыточные азот и фосфор и почва быстро наращивает плодородие.

Целинные чернозёмы – бесценное богатство России

Моя Живая Земля, где содержание гумуса быстро прирастает – моё бесценное богатство.

Наряду с процессом минерализации идет и процесс иммобилизации, то есть происходит накопление питательных веществ в клетках организмов почвы, и эти вещества становятся временно недоступны для растений.

Таким образом, питательные вещества в начале разложения органики накапливаются в микробной биомассе грунта.

Иммобилизация азота почвенными организмами часто представляет значительную проблему для растений. Азот является важным элементом для всех организмов, за него всегда идёт борьба между биотой и растением.

Дикие растения имеют множество способов отнимать азот у микробов, привлекают хищных амёб, вступают в симбиоз с азотофиксаторами, секретируют много сахаров в почву.

Культурные растения не всегда сохранили эти приёмы. Поэтому садовод должен следить за процессами в этой конкурентной борьбе и подкармливать растения азотом, но помнить, лишний азот угнетает биоту, нарушает почвенные пищевые цепочки.

А перекормленные азотом растения привлекают вредителей.

Поэтому иногда подкормки компостными чаями с микроорганизмами работают намного мягче и эффективней, чем подкормки минеральными солями.

Поговорим о соотношении углерода к азоту (C/ N) в органическом веществе.

Разные растения имеют разные соотношения углерода к азоту в составе своих клеток. Например, бобовые имеют более высокую долю азота, чем злаковые травы.

Различия в C/N растительного опада влияет на круговорот азота (и других питательных веществ) в почве.

Органическое вещество с высоким C/N, не может удовлетворить потребности микроорганизмов в азоте для своего роста.

А опад из растений с низким C/N, таких, как бобовые, обеспечивает быстрый рост микроорганизмов.

Если почвы окультурены, гумуса много, доступного азота в почве достаточно для удовлетворения роста растений, то минерализация органического вещества даже бедного азотом не повлияет на рост растений в краткосрочной перспективе.

Наоборот, на бедных почвах, внесение соломы и опилок вызывает острую нехватку азота у растений. Такие почвы надо мульчировать вначале готовым компостом и постепенно добавлять грубую углеродистую мульчу, сочетая её богатыми азотом зелёными травами.

Понимание этих процессов приходит к садоводу не сразу. Умение вносить органику с нужным соотношением С/N, это сродни умению ездить на велосипеде. Набьёте шишек – научитесь.

Учёные доказали, что регулярное внесение органики с высоким содержанием азота часто не меняет общее содержание углерода в почве, гумус не накапливается, а плодородие растёт. Почему?

Оказывается весь вносимый углерод входит в состав живых почвенных микроорганизмов, гумуса при избытке азота становится меньше, а биомасса микробов нарастает.

Наоборот. При регулярном мульчировании почвы щепой лиственных веточек, в которых много лигнина и сахаров, содержание стабильного гумуса нарастает. При этом и биомасса микроорганизмов тоже может возрастать. Это сохраняет плодородие почвы в долгосрочной перспективе.

В природе подобные процессы происходят на Сахалине. Горные ручьи выносят в долины глинистые частицы, песок и ил, на них вырастают гигантские широколиственные травы. Появление таких трав – это маркер хорошего соотношения ила песка и глины в наносных почвах.

Опад зарослей гигантских горцев и борщевика содержит много лигнина, много сахаров и достаточно белка. В почвах быстро накапливается одновременно и гумус и почвенная биота.

Формируется особое очень активное почвенное сообщество с очень сложными и стабильными трофическими цепями.

Разнообразие микроорганизмов и почвенных животных в этой системе очень высокое. В таких почвах обнаружены «высокоскоростные» марганцевые бактерии, которые перерабатывают органику с высокой скоростью.

Перенос такой почвы на грядки и в сад приводит к гигантизму культурных растений в течении 2-3 лет. А если продолжать мульчировать эти грядки опадом горцев и не убивать биоту «химией» и лопатой, то стабильные урожаи без болезней можно получать очень долго.

Компостирование

Есть ли принципиальные различия в разложении органических веществ в тонком слое мульчи на грядке и в большой компостной куче?

Общее в том, что там и там органическое вещество разлагается почвенными организмами.

Разница в том, что процесс компостирования в куче происходит, во-первых, при более высоком проценте азотистых веществ (правильно, на 30 частей углерода 1 часть азота), при большем содержании доступных для быстрого разложения сахаров и белков, при достатке фосфора и извести, при частом рыхлении, позволяющем насытить компост кислородам, при более толстом слое компоста, когда происходит его самосогревание.

Это приводит к гибели нестойких к высоким температурам бактерий и грибов, гибели патогенов и семян сорняков, селекции термофильных микроорганизмов которые становятся доминирующими. Но при этом теряется энергия сахаров и азот аминокислот.

Все эти искусственные условия обычно создаёт опытный садовод, чтобы получить так называемый качественный перегной или компост. Без сорняков и патогенов. С высоким содержанием NPK, доступными для растений. Однако без сложившейся экосистемы, как в мусорной куче.

Почему садоводы любят компостировать органику? Так их учат учебники. Так удобней вносить небольшие количества перегноя на грядки под зеленные культуры. Так безопасней в плане патогенов и сорняков.

И вроде это не минералка, а органика.

Для почвы это конечно органика. Почвенную биоту компост не угнетает, а вот для растений внесение компоста похоже на внесение слабых растворов минеральных удобрений, так как содержание азота в компосте из «горячих куч» очень высоко и приводит к азотистому перекорму.

Почему среди любителей органического земледелия распространяется мнение, что органику надо вносить сразу на грядки?

Да потому что такая органика сразу включается в пищевые цепочки, и нет потерь сахаров и азота аминокислот. И в этом они правы.

Даже на тучных чернозёмах корни за лето выедают 2% гумуса, а тут мы сразу даём энергию в виде доступных сахаров и аминокислот.

Беда в том, что не всякую органику можно внести на грядки и не под всякую культуру.

Что делать с выгребными туалетами? В компосты они пойдут. На грядки – нет.

Что делать с опилками и стружкой? На дорожки и в компост пойдут, на грядках – заберут азот.

А свежие сорняки? Проще в компост, на грядках избыток зелёных сорняков в случае дождя вызовет гниение стволиков растений.

«Вонючки из сорняков» так же опасны на нежных культурах, часто при попадании на листья они провоцируют развитие грибковых заболеваний. В вонючках анаэробы, а их действие непредсказуемо.

У меня нет проблем, как использовать органику. Всё идёт в подстилку животным. Затем подстилка с навозом лежит в мешках. Перепревает лишь частично, лигнин и целлюлоза сохраняются, потерь азота при низких температурах нет, сорняки прорастают, черви и прочие животные заводятся.

Таким полукомпостом я и мульчирую свой сад и огород. Возить такие подсохшие мешки удобно, вносить на грядки рыхлый соломистый полуперепревший навоз с запахом грибов тоже не тяжело.

Часть такого подстилочного навоза я складываю на год лежать нетолстым слоем в зарослях окопника. Получается «компост из мусорной кучи». Он идёт для производства АКЧ и для внесения на грядки с нежной салатной зеленью.

Эту статью будут критиковать с двух сторон.

Фанаты минеральных удобрений скажут, что биота это сложно и непрактично. Весь мир кормит растения качественной минералкой и обгоняет по урожайности и дешевизне любого природника.

Фанатичный природник скажет, что все эти идеи взяты из «западной литературы», что я покушаюсь на основные постулаты российского природничества.

Сейчас наступает время готовить почвогрунт для рассады.

У меня приготовлен хороший голландский торфяной субстрат, керамзит, цеолит (глина для кошачьего туалета), сухой сапропель, и набор кристалонов с разными составами для разных растений.

Я растворю глину (2%) в горячей воде, замочу в ней керамзит (10%), добавлю сапропель (2%) и остальное – это торфяной субстрат.

Посажу в него семена огурцов и томатов и буду регулярно поливать нужными кристалонами.

Я не хочу рисковать рассадой, используя покупные грунты якобы с биогумусом. Загубишь весной рассаду – потеряешь год и урожай.

А вот после высадки рассады, на грядках буду применять всё, о чем писал выше. Минералку и пестициды только в крайних случаях.

Это мои кристалоны. Подкормил пару раз рассаду.

Это всходы огурцов, выставлены под светодиоды пару недель назад.

Это огурчики, снятые сегодня 8.01.15 г. на холодном тёмном северном окне. Высаженные в описанный выше субстрат в открытых мешках из лутрасила с подсветкой двумя светодиодными лампами по 10 ватт. Уже с зачатками бутонов.

Геннадий Распопов, г. Боровичи, Новгородская область

08.01.2015

Другие статьи Геннадия Фёдоровича смотрите на Распопов Геннадий Фёдорович, садовод-испытатель из Новгородской области, публикации

Другие статьи по органическому земледелию смотрите в разделе Содержание почвы в саду, новое в агротехнике, органическое земледелие

Комментарии (7)
Сады Сибири © 2016

Сады Сибири

Внимание Ваш браузер устарел!

Мы рады приветствовать Вас на нашем сайте! К сожалению браузер, которым вы пользуетесь устарел. Он не может корректно отобразить информацию на страницах нашего сайта и очень сильно ограничивает Вас в получении полного удовлетворения от работы в интернете. Мы настоятельно рекомендуем вам обновить Ваш браузер до последней версии, или установить отличный от него продукт.

Для того чтобы обновить Ваш браузер до последней версии, перейдите по данной ссылке Microsoft Internet Explorer.
Если по каким-либо причинам вы не можете обновить Ваш браузер, попробуйте в работе один из этих:

Какие преимущества от перехода на более новый браузер?