Реклама

Разделы сайта

Новые комментарии

Реклама от Google AdSense

!!! Чтобы найти нужные вам саженцы, культуру, сорт и т.д., воспользуйтесь поиском, размещённым вверху каждой страницы. На сайте можно найти почти любой посадочный материал: семена, саженцы и прочее. Нужно самим поискать а не ждать "золотую рыбку" для услуг. По личным вопросам к авторам необходимо обращаться по указанным на страницах адресам, а не в комментариях. Личная переписка удаляется
Каталоги на посадочный материал постоянно обновляются. Советуем регулярно проверять изменения в соответствующих разделах, на персональных страницах садоводов и на других страницах сайта

При введении комментария просим указывать своё имя и регион и свой e-mail-адрес

Влияние заснеженной поверхности на температуру воздуха

Влияние заснеженной поверхности на температуру воздуха

Ко мне по телефону обратился ряд знакомых садоводов с просьбой рассказать о влиянии снежного покрова на температуру воздуха над ним. Свою просьбу они мотивировали нынешней достаточно суровой зимой. С такой же просьбой обратились ко мне и мои коллеги по основной работе, после того как мне пришлось долго объяснять им, в чем заключается механизм изменения температуры воздуха на разных высотах от снежной поверхности. Вообще-то, моя статья на данную тему уже публиковалась в «УС» (№7/2004 г.), и я отсылал всех интересующихся к этой статье. Но просьбы вновь опубликовать такую статью были очень настойчивы. И я решил, что действительно с первой публикации уже прошло шесть лет, появилось много новых садоводов, да и зимы с каждым годом приносят постоянно неожиданные сюрпризы и перепечатка данной статьи будет весьма полезна для большинства садоводов. Поэтому ниже с небольшими доработками указанная статья печатается вновь.

Исследованиями специалистов был отмечен особый ход температуры на поверхности снега и вблизи нее в воздухе по сравнению с температурой воздуха на высоте 1-1,5 м. При этом вполне определенно было отмечено, что именно микроклиматические особенности приснежных слоев воздуха очень часто являются причиной гибели плодовых деревьев во многих районах России и бывшего Союза, включая и нашу Свердловскую область.

Ночью поверхность снега и прилегающие слои воздуха охлаждаются намного сильнее (в среднем на 5-9°С), чем вышележащие. Днем на свету температура поднимается до положительной. В воздухе на высоте 50-100 см такое явление практически не наблюдается. Резкие колебания температуры приснежных слоев воздуха и находящихся здесь тканей растений вызваны рядом обстоятельств: особыми тепловыми свойствами снега, воздействием солнца, состоянием атмосферы и самими растениями. Снег теряет тепло на излучение, особенно ночью при тихой ясной погоде (коэффициент длинноволнового излучения свежевыпавшего снега – 0,82, лежалого снега – 0,89). Сильные и продолжительные морозы в Сибири, на Урале и даже на Украине наблюдаются именно при таких условиях. Большим потерям тепла способствует и очень шероховатая поверхность снега. Повышенная сухость воздуха зимой в Сибири и на Урале ведет к большим потерям снега на испарение, вызывая дополнительно еще значительный расход тепла. Кроме того, охлаждение приснежных слоев воздуха связано еще с прекращением поступления тепла из глубины почвы. Снег, как плохой проводник тепла, разрывает теплооборот между почвой и воздухом. В результате его поверхность очень сильно охлаждается, хотя в нем наблюдаются небольшие отрицательные температуры (-5...-12°С).

Повышение температуры верхних горизонтов снега и приснежных слоев воздуха днем связано с солнечной радиацией (коэффициент коротковолнового поглощения свежевыпавшего снега – 0,13, лежалого снега – 0,33). Часть солнечной радиации проникает в толщу снега и нагревает его. Этому способствуют ветки плодовых и ягодных растений, пронизывающие его во всех направлениях. Они нагреваются до положительных температур при отрицательных температурах воздуха. Снег днем в январе-феврале подтаивает вокруг веток при температуре ночью на поверхности снега до -40°С, чему в немалой степени способствует и так называемые парнички вокруг веток. Ледяная корка в начале образуется вокруг веток, затем она разрастается, свободно пропускает световые лучи и препятствует тепловому излучению от веток и снега в атмосферу. В результате под поверхностью льда в снегу ткани растений нагреваются до высоких положительных температур, и начинается их жизнедеятельность, а ночью они охлаждаются до очень низких температур. Такие резкие колебания наиболее часто проявляются во второй половине зимы, вызывая отмирание коры – «ожоги».

Сильное выхолаживание приснежных слоев воздуха зависит от климатических особенностей района, зимы и погоды. Охлаждение приснежных слоев воздуха наблюдается, по существу, во всех районах, где устанавливается постоянный снежный покров. Однако частота его проявления и интенсивность далеко не одинаковы в различных районах. В европейской части России охлаждение бывает реже и разница в температурах верхних и нижних слоев воздуха меньше (не более 3-5°С). Лишь в Поволжье перепады температур на поверхности снега достигают больших величин, вызывая существенные повреждения тканей на линии снега, особенно у молодых деревьев. Резкость колебаний значительно возрастает на Урале, в Западной Сибири и достигает своего наибольшего значения в Восточной Сибири и на Дальнем Востоке в связи с преобладанием тихой безоблачной сухой антициклональной погоды без оттепелей.

Наиболее низкие температуры на поверхности снега чаще всего наблюдаются в зимы многоснежные. После обильных снегопадов на длительное время устанавливается ясная тихая погода, способствующая усиленному охлаждению приснежных слоев воздуха. Например, в Свердловской области такими были зимы 1966-67, 1968-69, 1978-79, 1984-85 годов. В малоснежные зимы колебания на поверхности снега также велики, но они наблюдаются при меньших абсолютных минимумах температур, и растения почти не повреждаются. Во второй половине зимы температура на поверхности снега колеблется наиболее сильно. В это время на Урале обычно преобладает тихая ясная сухая морозная погода, и в более редкие годы январь-март отличаются обильными метелями, снегопадами и повышенной влажностью воздуха. В ноябре-декабре же, как правило, наиболее часты ветры, повышенная облачность и обильные осадки, что не способствует охлаждению поверхности снега. Меньшему охлаждению приснежных слоев воздуха в первые зимние месяцы способствуют и другие причины, в частности малая высота снега и еще слабое охлаждение почвы. Тепло из нее поступает к верхним горизонтам снега, так как его небольшая высота еще не препятствует проникновению тепла. Но, несмотря на сказанное, случаются отдельные редкие зимы (например, зима 1998-99 годов с температурой около -30°С в воздухе, наблюдавшейся 10-12 ноября), когда наблюдаются ранние, не особенно низкие, кратковременные понижения температуры на поверхности снега, наносящие существенные повреждения растениям и по своим последствиям мало уступающие зимним.

Наиболее пагубное воздействие на растения оказывают не столько понижения температур, сколько скорость их проявления в течение суток. Наблюдения показывают, что утром на снегу температура самая низкая, но уже к 10 часам, когда солнечные лучи касаются его поверхности, она повышается и на таком уровне удерживается до захода солнца, после чего она резко снижается и уже к 22 часам понижается до самых низких пределов, после чего охлаждение поверхности снега замедляется и начинается выхолаживание вышележащих слоев воздуха. Обычно повышение температуры на поверхности снега наблюдается с 8 до 14 часов, а понижение – с 14 до 20 часов, при этом нагревание тканей растений идет более интенсивно, чем последующее охлаждение в вечернее время. Скорость же оттаивания имеет решающее значение для выживаемости тканей плодовых растений. Сильное подмерзание тканей растений в приснежных слоях воздуха связано и с длительностью воздействия низких температур. Например, в одном из наблюдений низкие критические температуры на поверхности снега в течение суток удерживались 5-6 часов, в то время как на высоте 50 см – только не более 1 часа. Таким образом, резкие колебания температуры на поверхности снега в зависимости от времени и продолжительности их проявления, а также состояния растений наносят различные повреждения тканям (растрескивания коры и древесины, солнечные ожоги коры и древесины, повреждения древесины), нередко приводящие к гибели отдельных ветвей и ствола, а иногда и всей надземной части кроны выше снегового покрова.

Для лучшего понимания особенностей установления приснежных температур воздуха и в каком-то виде влияния на них хочу дальше более подробно в популярном виде рассмотреть механизм этого явления. Как известно, земля получает энергию посредством солнечной радиации (длина волн 0,3-2,2 мкм), а потеря энергии в пространство происходит за счет длинноволновой радиации (длина волн 6-100 мкм). Свойственная снежному покрову высокая отражательная способность меняется с длиной волны так быстро, что на более длинных волнах снег оказывается плохим отражателем, но зато хорошим излучателем. Хотя существенная часть длинноволновой радиации, излучаемая заснеженной земной поверхностью, возвращается к ней вследствие поглощения и излучения атмосферой, значительная часть ее (около 20%) теряется в пространстве. Если эти потери не компенсируются поступлением энергии из других источников, результирующий эффект выражается в понижении температуры воздуха, особенно в нижних слоях атмосферы. Температурный профиль воздуха, подверженного радиационному выхолаживанию в течение длительного времени, характеризуется очень низкой температурой у поверхности.

Регионом, где в России наблюдается интенсивное радиационное выхолаживание, в результате которого формируются воздушные массы, характеризующиеся очень низкой температурой у поверхности, слабыми ветрами и ясным небом, является Сибирь. При захвате сибирским антициклоном зоны Урала такие температуры нередко устанавливаются и в нашей области.

Согласно правилам лучистого теплообмена количество теплоты, выделяемой с поверхности снега при лучеиспускании, прямо пропорционально коэффициенту излучения снежной поверхности, ее площади, а также разности температур этой поверхности и слоев воздуха, с ней соприкасающихся. Заснеженная поверхность, образованная скоплением многочисленных отдельных снежинок и состоящих из них отдельных разнообразных блоков, представляет собой чрезвычайно шероховатую поверхность. Кроме того, и сами снежинки (атмосферные и снежные кристаллы) представляют собой также чрезвычайно шероховатые образования. Суммарная площадь такой поверхности оказывается намного большей, чем площадь, ограниченная только длиной и шириной поверхности. Особенно сильно шероховатость и суммарная площадь заснеженной поверхности увеличиваются при образовании ее свежевыпавшим снегом.

На рис. 2 приведено изменение коэффициента излучения тел с шероховатой (1) и гладкой поверхностью (2) в зависимости от угла излучения (А. Мачкаши, Л. Банхиди «Лучистое отопление», Москва, Стройиздат, 1985 г.). Из рис. 2 видно, что коэффициент излучения шероховатых поверхностей – значительно больший, чем гладких. К тому же коэффициент излучения шероховатых поверхностей при приближении угла излучения к 75-90° уменьшается медленнее, чем для гладких поверхностей. То есть, чем больше шероховата поверхность излучения, тем больше ее коэффициент излучения и тем в большем углу происходит излучение. А с учётом увеличения при этом до максимально возможной и самой излучающей поверхности можно говорить и о максимально возможной потере тепла этой излучающей поверхностью.

Откуда же берется тепло, расходуемое в процессе излучения? Это тепло берется из прилегающих к поверхности слоев снега. Но снежный покров благодаря содержанию в нем значительного количества воздуха обладает хорошими теплоизоляционными свойствами. Поэтому отрицательные температуры приснежных слоев воздуха распространяются на небольшую глубину. Из этих слоев снега и происходит выделение тепла, затрачиваемого на излучение. На рис. 3 приведена зависимость ослабления суточных колебаний температуры с глубиной в слое снега, взятая из «Справочника снега», Ленинград, Гидрометеоиздат, 1986 г. Из рис. 3 видно, что уже на глубине 40 см амплитуда суточных колебаний температуры снега полностью отсутствует, а на глубине 20 см имеет незначительную величину. Поэтому ориентировочно слой снега толщиной в 20 см можно считать ответственным за выделение тепла, расходуемого на излучение. Правда, при длительном стоянии сильных морозов амплитуда суточных колебаний температуры будет отсутствовать на глубине несколько большей чем 40 см, но и в этом случае для ориентировочной оценки можно считать ответственным за выделение тепла, расходуемого на излучение, слой снега в 20 см.

Удельная теплоемкость снега равна 2,115 кдж/кг°С. То есть при отнятии от 1 кг снега 2,115 кдж тепла на излучение снежной поверхностью его температура должна понижаться на 1°С. Но плотность снега очень небольшая (свежевыпавший снег имеет 50-300, уплотненный ветром снег – 150-400, фирн – 450-700 кг/куб.м). Поэтому этот 20-сантиметровый слой снега, прилегающий к снежной поверхности, имея в своем объеме невысокую его массу, вынужден для возмещения затрат тепла на излучение охлаждаться на большую величину градусов. Теплота внутри 20-сантиметрового слоя снега передается к его поверхности за счет теплопередачи благодаря теплопроводности. Наибольшие потери тепла на излучение и наибольшее снижение температуры снега и приснежных слоев воздуха, как уже указывалось выше, происходят в ясные, тихие, безветренные ночи при снежной поверхности, образованной свежевыпавшим снегом, толщиной не менее 40 см, исключающей поступление тепла от земли.

При рассмотрении особенностей образования приснежных температур воздуха и температуры поверхности снега во внимание принималась его ровная поверхность. Однако и в лесу, и в поле, и в саду имеются разные неровности, и снег в течение зимы благодаря им откладывается неравномерно. Попробуем рассмотреть, как влияют такие снежные возвышения на температуру снежной поверхности и на температуру приснежных слоев воздуха на их вершинах.

На рис. 4 для примера показаны два снежных сооружения: одно с круглой плоской поверхностью радиуса r и толщиной слоя, отдающего тепло, 20 см, другое со сферической поверхностью радиуса r с толщиной сферического слоя, отдающего тепло, 20 см (для наглядности у того и другого сооружения не показана одна их четверть). Сравнение указанных сооружений показывает, что площадь поверхности сферы второго сооружения больше плоской поверхности первого сооружения в 2 раза. Попробуем оценить отношение объема 20-сантиметрового слоя снега, участвующего в доставке тепла к снежной поверхности для излучения. В первом сооружении этот объем постоянен и постоянно отношение этого объема к излучающей поверхности. Во втором сооружении этот объем зависит от радиуса сферы и наименьшим получается при малых радиусах сферы. Зависимым от радиуса сферы получается и отношение этого объема от соответствующей ему поверхности сферы. Сравнение отношений 20-сантиметрового слоя снега к поверхности излучения для первого и второго сооружения показала, что для второго сферического сооружения при r=0,5 м оно было на 35% меньше, чем для первого плоского сооружения с тем же радиусом r, при r=1,0 м – на 18,5% меньше, при r=1,5 м – на 14,5% меньше, при r=2,0 м – на 10% меньше.

Таким образом, при сферическом снежном сооружении 20-сантиметровый слой снега содержит меньший его объем, использующийся для отдачи тепла определенной поверхности снега на лучеиспускание, чем такой же слой снега при плоском сооружении с такой же поверхностью. Кроме того, шероховатость и площадь поверхности сферы такого снежного сооружения оказывается значительно большей, чем эквивалентной по геометрическим размерам плоской снежной поверхности. Отсюда следует и проявление большей охлаждаемости снежной поверхности и приснежных слоев воздуха на вершине такого сферического снежного сооружения, чем на ровной поверхности снега. Такое снижение температуры воздуха на вершинах снежных сооружений наблюдается только в безветренные ночи. Способствует этому и свежевыпавший рыхлый снег, задерживающий сток более холодного воздуха с вершин.

Наблюдения за температурой воздуха на снежных возвышениях в Сибири, в европейской части России и в ряде других мест показали, что действительно в ясные безветренные ночи эти температуры на несколько градусов ниже, чем на ровной поверхности снега. В Сибири, по наблюдениям Г. В. Васильченко, разница этих температур достигает 2-4°С. То же самое можно считать и для нашей области. Такое установление отрицательных температур большее на возвышениях, чем на ровной поверхности снега, требует очень осторожного отношения к окучиванию деревьев и кустарников снегом. Надо всегда помнить и оценивать: принесет ли окучивание растений снегом пользу им? Окучивание растений снегом способствует благоприятным климатическим условиям окученных их частей и в то же время ухудшает температурные условия на границе снега их неокученных частей. В этих условиях целесообразно окучивать растения полностью. Но такое окучивание большеобъемных растений не осуществимо практически. Кроме того, при большом окучивании возможно подопревание растений и незавершение ими периода покоя, что сказывается на их росте весной и на плодоношении.

Учитывая все сказанное, садоводы-любители обязательно должны знать и учитывать возможность снижения температуры воздуха на ровной поверхности снега на 5-9°С, а на вершинах холмов и сугробов на 8-12°С по сравнению с температурой воздуха на высоте 1-1,5 м от этих снежных поверхностей в любую зиму. Для исключения влияния указанных экстремальных температур все малозимостойкие садовые растения следует пригибать к земле и полностью окучивать снегом. Садовые растения, зимующие в открытой форме – штамбовые яблони, сливы, вишни, абрикосы, сладкоплодные рябины, крупноплодные боярышники – следует выращивать на высокозимостойких штамбообразователях, прививая культурные сорта на высоту около 1,5 м. Никакого окучивания таких растений снегом не проводят. При окучивании садовых растений со средней зимостойкостью, выращиваемых в открытой форме, стремятся полностью окучить основание кроны с развилками ветвей, чтобы сохранить его зимой и восстановить из него в случае вымерзания части кроны, расположенные выше снегового покрова. С этой целью при формировании кроны дерева должно быть предусмотрено низкое расположение ее основания. Молодые плодовые деревья с прививкой в корневую шейку, зимостойкость которых всегда меньшая, чем взрослых таких плодовых деревьев, следует обязательно окучивать на максимально возможную высоту. Но во избежание возможности подопревания и непрохождения периода покоя диаметр снежного холма должен быть небольшим. Взрослые плодовые деревья с высокорасположенным основанием скелетных ветвей лучше также не окучивать, поскольку отмершая часть коры внизу более толстая и обладает большими теплоизолирующими свойствами. При защите живых тканей при окучивании таких деревьев снегом зона экстремальных приснежных температур приближается к развилкам оснований скелетных ветвей кроны, наиболее уязвимых к таким температурам. Кроны всех низкорослых плодовых деревьев даже без окучивания их снегом, только при естественном его снегопереносе, попадают в зоны приснежных экстремальных температур и в большей степени подвержены при этом подмерзанию, чем кроны высокорослых плодовых деревьев. По указанной причине в наших условиях должно быть мало перспективно выращивание в открытой форме карликовых, колонновидных и кустовидных плодовых деревьев. Эти деревья следует выращивать в стланцевой форме.

В. Н. Шаламов

(Уральский садовод)

Другие статьи В. Шаламова в разделе Шаламов Виталий Николаевич: статьи по садоводству

Комментарии (0)
Сады Сибири © 2016

Сады Сибири

Внимание Ваш браузер устарел!

Мы рады приветствовать Вас на нашем сайте! К сожалению браузер, которым вы пользуетесь устарел. Он не может корректно отобразить информацию на страницах нашего сайта и очень сильно ограничивает Вас в получении полного удовлетворения от работы в интернете. Мы настоятельно рекомендуем вам обновить Ваш браузер до последней версии, или установить отличный от него продукт.

Для того чтобы обновить Ваш браузер до последней версии, перейдите по данной ссылке Microsoft Internet Explorer.
Если по каким-либо причинам вы не можете обновить Ваш браузер, попробуйте в работе один из этих:

Какие преимущества от перехода на более новый браузер?